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Abstract Theoretical work concerning the microstructural characterization and analysis of aniso­
tropic piezoelectric media with inclusions is rather scarce. especially in comparison with numerous
results and micromechanics models which exist today on the inclusion problem in anisotropic elastic
media. In thIs investigation. the Stroh formalIsm is used to develop a general solution for an infinite,
anisotropic piezoelectric medium with an elliptic inclusion; the coupled elastic and electric fields
both inside the inclusion and on the boundary of the inclusion and matrix are given.

I. INTRODUCTION

For many years piezoelectric ceramics and composites have served well as functional
elements for converting electrical energy into mechanical energy, and vice versa. Generally,
a piezoelectric material is a complex system composed of crystallites, defects (cracks or
pores) and inclusions (piezoelectric ceramic fibres or particles). The existence of these defects
and inclusions greatly affects the electric, dielectric, piezoelectric, elastic and mechanical
properties of such materials (Okazaki, 1985). To gain an understanding of the piezoelectric
effect in ceramics we must first consider the behaviour of the material on a microscopic
scale and determine the effects of defects and inclusions on the properties of such materials.
The electroelastic analysis and effective constant predication of piezoelectric materials with
defects and inclusions become a very important topic in the design and manufacturing of
piezoelectric elements.

The coupled electroelastic behaviour of the constituents presents a level of difficulty
not present in the design and analysis of the mechanical behaviour of the piezoelectric
materials. Further complicating factors arise from the inherent anisotropy of the piezo­
electric ceramics. Nevertheless, a reasonable amount of theoretical work has been directed
towards the study of the dislocation, crack and inclusion problems and interfacial behaviour
in homogeneous piezoelectric solids [see, for example, Deeg (1980), Zhou et al. (1986),
Sosa and Pak (1990). Benveniste (1992), Suo et al. (1992), Wang (l992a, b), Chen (1993a,
b), Dunn and Taya (1993)]. Sosa and Pak (1990) developed a three-dimensional solution
for isotropic piezoelectric ceramic with defects. Wang (I 992a, b) and Chen (l993a, b)
examined the inclusion and crack problems in a piezoelectric matrix based on the Green
function and Fourier transformation techniques. By reexamination of Deeg's (1980) rig­
orous analytical solution for a piezoelectric inclusion, Dunn and Taya (1993) estimated the
effective properties using the dilute, self-consistent, Mori-Tanaka and differential micro­
mechanical models. For a wide survey on micromechanical modelling of piezocomposites
and the determination of their effective moduli, the reader is referred to recent papers by
Benveniste (l993a. b), Maugin et al (1992), and Avellaneda and Olson (1993).

The present paper is concerned with deriving an exact general solution for an infinite,
anisotropic piezoelectric medium with an elliptic inclusion; the coupled electroelastic fields
of the inclusion and matrix are given when the external elastic field and electric field are
constant. The developed theory is based on the central idea of the Stroh formalism estab­
lished by Stroh (1962) and further elaborated by Ting (1986, 1988). In contrast to the
classical formulation. the Stroh formalism has been proved to be elegant and powerful in
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solving two-dimensional anisotropic elasticity problems. More recently, the Stroh for­
malism has been generalized to treat dislocations and line charges in linear piezoelectric
media by Pak (1992) and solve the boundary value problems of electroelastic media by Suo
et al. (1992). In the following sections we consider two-dimensional elliptic piezoelectric
inclusion problems and use the Stroh formalism to find the coupled elastic and electric
fields inside the inclusion and the matrix interfacial quantities. Universal relations are
derived between the coupled fields and the effective elastic, piezoelectric and dielectric
constants of the piezoelectric solids. These relations are shown to reduce to Hwu and Ting's
result in the special case of anisotropic nonpiezoelectric media (Hwu and Ting, 1989).

2. BASIC EQUAnONS

If the free charges and body forces do not exist in a piezoelectric body, the static elastic
and electric field equations can be written as (Maugin, 1988):

(JU.I = 0

Di = F.isE\.+ein'}'rs~

(I)

(2)

(3)

(4)

where y, (J, D and E are the strain, stress, the electric displacement and the electric field,
respectively. The elastic, piezoelectric and dielectric constants of the medium are represented
by the fourth, third and second order tensors C, e and f. respectively, which satisfy the
symmetry relations:

(5)

If u is the elastic displacement vector and <I> the electric potential, the infinitesimal strain
'Y and the electric field E are derived from gradients:

(6)

Substitution ofeqns (6) into eqns (3) and (4) yields

(7)

Inserting eqns (7) into (I) and (2), respectively, we obtain

(8)

For two-dimensional problems in which u and <D depend on Xl and X2 only, the general
solution can be obtained by considering an arbitrary function of a linear combination of
Xl and X2:

(9)

It is convenient, here and in the sequel, to take {u" <D} to be a column with the entities
indicated, so that a is likewise a four-component column. Without loss of generality, one
can always take ~ I = I, ~2 = p. Thus, the number p and the column a are determined by
substituting eqn (8) into (9), which gives
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( 10)

where rJ., f3 = 1 or 2. This is an eigenvalue problem consisting of four equations; a nontrivial
a exists if p is a root of the determinant polynomial. Since eqn (10) admits no real root
(Suo et at., 1992) and the p, occur as four pairs of complex conjugates, we let

P,~4 = Pn Im(p,) > 0, rJ. = 1, 2, 3,4, (11)

where an overbar denotes the complex conjugate and 1m stands for the imaginary part.
More generally, we have

4

V = {u" <1>} = 2Re I a,f~(z'),
:l=1

(12)

in which Re stands for the real part, a, the associated columns, and z, = x 1+P,X2- For a
given boundary value problem, the stress and the electric displacement obtained from eqns
(7) and (12) are given by

4

{a2j, Dd = 2Re I bJ~(z"),
7.=1

where, for a pair (p, a), the associated b is

4

{all' Dd = -2Re I bJ~(z'),
:z=1

(13)

Substituting eqn (14) into (10) gives an alternative expression:

(14)

In matrix notation, eqns (14) and (15) are expressed as

I
b =(R T +pT)a = - ~(Q+pR)a,

p

where the superscript T is the transpose and Q, Rand Tare 4 x 4 matrices given by

(16)

R = [Ct2 e2J1 ]
el r2 -G12 4x4

[C lirl el,l ] (17)Q=
eTrl -G" 4 x4

T = [C;/r2 e2j2 ]
e2r1 -£22 4x4

We see that Q and T are symmetric and T is positive definite, so eqn (16) can be recast in
the standard eigenrelation

SAS 32/20-0

N~ =pf, (18)

(19)
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N 1 = -T-1RT,Nz = T- 1 = NI},

N 3 = RT-IRT -Q = NT
(20)

where N z and N 3 are also symmetric and N z is positive definite. If we define the 4 x 4
matrices A and B by

(21)

each a is determined by the eigenvalue problem up to a complex-valued normalization
constant. Assuming that the eigenvalues p, are distinct or, if there is a repeated eigenvalue,
the associated eigenvectors a, are independent of each other, it can be proved that the
matrices H, L, S introduced by Barnett and Lothe (1973):

S = i(2AB
T -I))

H = 2iAAT
,

L = -2iBBT

(22)

where i = J-=-1 and I is the unit matrix, are real and valid for the coupled electroelastic
problem in the Appendix. Moreover, Hand L are symmetric and positive definite, the
matrices H- IS, SH, LS, SL - I are antisymmetric, so we also have the identity

By introducing the auxiliary function as follows:

4

U = 2Re L b,j~(z,),
CJ.=1

eqns (13) can be rewritten as

Finally, from eqns (12), (18) and (24), we have the following differential equation:

3. ELECTRIC AND ELASTIC FIELDS IN MATRIX AND INCLUSION

(23)

(24)

(25)

(26)

In an infinite anisotropic piezoelectric material, consider an elliptic inclusion whose
boundary is given by

XI = acosljJ X z = bsinljJ, (27)

where 2a and 2b are the major and minor axes of the ellipse. The inclusion is trended
indefinitely in the x3-direction, the uniform stress and electric field are applied at infinity.
The inclusion and the matrix have perfect bonding along the interface (27). Let (Jij, yij be
the stresses and strains, D ': , E:- the electric displacement and electric field in the matrix at
infinity. They are defined from eqns (3) and (4):

(28)

We note that (J,i have to be prescribed in such a way that Y33 = 0, so the auxiliary functions
VX and UX can be expressed using the variables in an infinite body
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_,e<. {.". 0 2"e<. } U
X 1II = III' , (I, = .1

"e<. _ (2"x .,X. 2."X } - uX
/2 - l f21' /22, 11.1 - .1

tT = {aTI' aT2. a(,}

t{ = {a21. a{2. a{,}
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(29)

(30)

(31)

In many applications. including the present oneJI' f~. f~, f~ have the same functional form

f~(zJ = qJ(z,) , rx not summed, (32)

where q" rx = 1,2,3 and 4, are arbitrary complex constants. If we introduce the diagonal
matrices

eqns (12) and (24) can be written as

v = 2Re{ AF(z)q}

U = 2Re{BF(z)q},

(33)

(34)

(35)

(36)

in which q is the 4 x I matrix whose elements are q" rx = 1,2,3 and 4. Before we superimpose
the general solution (35) and (36) onto (29) and (30), we replace the complex constant q
by

(37)

where g and h are real. We. therefore, consider the general solution

of the auxiliary function for the piezoelectric materials with elliptic inclusion. Following
Lekhnitskii (1968), we choose the arbitrary functionf(z,) in F(z) of the following form:

F(z) = diag( (I 1, (i I, (,- I. (4 I) }

(, = {z,+[z;-(a2+p;b2)t2}/(a-ip,b) .

It is clear that

Along the interface (27), we then obtain

(40)

(41)
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~; 1 = COS ljI- i sin ljI , F(z) = (cos ljI- i sin ljI)I. (42)

We next consider the general solution of auxiliary functions VO and VO in the inclusion
of piezoelectric ceramics. According to Wang (1992a), the coupled elastic and electric fields
inside the inclusion stay uniform when the external elastic field and electric field are constant
for the piezoelectric medium containing an ellipsoidal inclusion. As a simple example, the
above conclusion can be obtained for an elliptic inclusion

(43)

(44)

where

,,0 {.,o OJ 2},0} UO
11 = fIl, , 13 = .1

(45)

in which OJ is the rotation (counter clockwise) of the elliptic inclusion. The elastic and
electric fields in the inclusion are also related by eqns (3) and (4)

(46)

(47)

where C~m e~, e?r, are the elastic constants, dielectric permittivity and piezoelectric constants
of the inclusion, respectively. From the basic solution given by (38) and (39) for the matrix
and by (43), (44) for the inclusion, the problem reduces to the determination of the unknown
constants g, h, (t?, D?),(t~, D~),M, En and (yg, E~) only. This is presented below.

Along the elliptic interface defined by (27), eqns (43) and (44) reduce to

VO = acos ljI{y?, E?} +b sin ljI{y~, E~}

while (38) and (39) become, using (22) and (42),

v = cos ljI(a{yt , Et} +h)+sinljl(b{Y2 ,En -Sb-Hg)

v = cosljl(a{tf, Df} +g) -sin ljI(b{tf, Df} -Lh+STg).

(48)

(49)

(50)

(51)

Assume the bond is perfect, so that the displacement and potential, the stress and electric
displacement are continuous across the bonded segment:

This leads to

v = V o , V = Vo. (52)
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From eqns (26), (31) and (45), we have

{ ,,,X E00 _(X _Dx~ _ N{"X EX ('" DOC}
(2,2, " 1)- {I, 1,2, 2 (55)

(56)

in which N° is similar to that of eqns (19) and (20), but its material constants are that in
the inclusion. According to the solution of anisotropic elasticity problems introduced by
Hwu and Ting (1989), eqn (54) can be rewritten, using (53), (55) and (56), as

(57)

where

b °D, = H+-N,- a-

dl = (NI-N?){Yf,En+(N2-N~){(f,Dn

d2 = (N3-N~){Yf,En+(NI-N?){(f,Dn·

Equation (57) can be solved for hand g explicitly by inverse transformation; we then
obtain

h = b(DJ+DTDiIDI)-I(DTDildl-d2)}

g = b(D2+D1Di'Di)-'(d, +D 1Di 1d2) .
(58)

We also rigorously prove that (D3+DTDi I D,) -I and (D2+D ,D J 1DD- 1 are both posi­
tive definite, which justifies the appearance of the inverse in eqns (58).

4. IDENTICAL EQUATIONS

Let n(w), m(w) be, respectively, the unit vectors tangent and normal to the interface
boundary; we have

nT (w) = (cosw, sin w, 0), mT (w) = (-sin w, cos w, 0).

Therefore, eqns (17) can be generalized by

(59)
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R(w) = [C~.'"
ell· l_

Q(w) = [C~.n
eln

T(w) = [~i:'

("ii]
flim,

-ci,1

("ii] flifl,
-Cis

("ji]
mirn,

-Gis

(60)

We see that (60) reduces to (17) when w = O. Next we consider the generalized eigenrelation

N(w)( = p(w)(

N I (w) = - T- I(w)RT(w), N 2 (w) = T- ' (W)}.

N,(w) = R(w)T-I(w)RT(w)-Q(w)

It can be proved that the eigenvalues pew) are related to pin eqn (18) by

pew) = (p cosw-sin w)!(p sinw+cosw).

(61)

(62)

(63)

(64)

As before, eqns (61) have eight eigenvalues p,(w), 1m (p,(w» > 0, :x = 1,2,3 and 4, which
come in four pairs of complex conjugates and can be combined into one compact form as

{A} [A pew)],
N(w) B = B pew)

where A and B are defined in (21) and

If we postmultiply both sides of (65) by the matrix [BT, AT] and use (22), we have

[
AP(W)B

T
AP(W)ATJ [I-iS -iHJ

2 = N(w)
BP(w)BT BP(w)AT iL I-iST '

Substituting N(w) from (62), we obtain the identities

2AP(w)BT = N I(w) - i[NI (w)S - N 2 (w)L]

= N1(w)-i[SNj(w)+HN,(w)L]

2AP(w)AT = N 2 (w) -i[NI (w)H+ N 2 (w)ST]

2BP(w)BT = N 1 (w) -i[N,(w)S-Ni(w)L]

(65)

(66)

(67)

(68)

The proof parallels that of Barnett and Lothe (1973) for the anisotropic elasticity problem,
so we have an alternative expression for S, Hand L defined in (22)
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If"S = - N1(w)dw
1t 0

If"H = - N 2 (w)dw
1t 0

1 f"L = - - N, (w) dw
1t 0

2997

(69)

for anisotropic piezoelectric materials. The three matrices S, Hand L can be used to obtain
the real-form solutions of the electroelastic fields in an anisotropic piezoelectric medium,
without determining the eigenvectors A and B.

5. FIELDS ALONG THE INTERFACE BOUNDARY

Let n(w), m(w) be, respectively, the unit vectors tangent and normal to the interface
boundary, and Tm the stress and electric displacement vectors along the interface boundary.
We have

T,,, = V." = coswU 1 +sinwU2 •

Since V = V O at the interface boundary, use of (44) leads to

T", = cos wTg - sin wT?,

(70)

(71 )

where TO are the stress and the electric displacement vectors in the inclusion. Next consider
the stress and the electric displacement vectors normal to the interface boundary, then

T" = - V.", = sinwU 1 -coswV.2 .

Substituting (39) into this leads to

(72)

T" = sinwTr- +coswTt -2Re{BF",(z)AT }g-2Re{BF.",(z)BT }h, (73)

in which rx are the stress and the electric displacement vectors in the matrix at infinity.
The differentiation of (41) and evaluation of the result at the interface boundary (27) yields

o _I . d "-I
-.;- ¢, = (p, cos w - Sill w) d----=- C;,
urn "',

where we have made use of (64). Therefore, using (40) we obtain

(
I i.)£.",(z) = ~cosw- bSlllw pew),

where P(w) is defined in (66). Finally, substituting (75) into (73) and using (68) yields

(74)

(75)
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TII(w) = cosw{ Tr - ~ [N3 (w)h + NT(w)g] }

+sin w{ Tr· + ~ [N 3 (w)(5b+ Hg) + NT (W)(STg-Lh)]}- (76)

If we employ (53) and (54) to eliminate g and h, an alternative form is given

TII(w) = cosw[rf +N3 (w)({Yf,Er} -{y?,E7})+NT(w)(Tf -Tm

+ sin w[Tf + N 3 (w)( {yf, E2} - {yt E~}) -NT(w)(Tf - T?)], (77)

where eqns (76) and (77) are the real-form solution for the elastic and electric fields to the
problem of an elliptic inclusion in an infinite piezoelectric medium subject to a uniform
stress at infinity. It is clear from (76) and (77) that the coupled fields are only dependent
on the identities given by the elastic and electric constants and the boundary conditions.
We can also state in the case of a nonpiezoactive medium (e'ii = 0) there can be no coupled
solution; particular formulae of independent elastic and electric fields are derived from the
general expressions (76) and (77), which can be exactly reduced to the existing formulae
given by Hwu and Ting (1989) using the Stroh method in anisotropic elastic mechanics.

6. CONCLUSION

In this paper, the Stroh method in anisotropic elastic mechanics was used to analyse
the coupled elastic and electric fields in an infinite piezoelectric medium containing an
elliptical inclusion. The explicit real-form solutions for the e1ectroelastic fields both inside
the inclusion and on the boundary of the inclusion and matrix are obtained. The general
expression can also be applied in measuring the piezoelectrical constants of piezoelectric
composites. It is apparent that understanding of the coupled electrical and mechanical
properties of the generalized anisotropic piezoelectric body is essential for the design and
manufacture of piezoelectric components.
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APPENDlX

In this Appendix we state the result which is mentioned in Section 2. First, following eqns (IS) and (19), we
have

(AI)

If we introduce the matrix J = [~ ~J which satisfies the identity

where I is the 4 x 4 unit matrix, postmultiply both sides of (A I) by the matrix J and use (A2), we obtain

NT(J~) = p(J~).

'b}Let 'I = J~ = {a ; eqns (A I) and (A3) can then be rewritten as

N~, = p,f;, }
x, fi = 1. 2.. ..8.

NT '7/1 = PIJ'lJi

Since the eigenvectors are orthogonal

use of the 4 x 4 matrices A and B defined in eqns (21) leads to

It is clear that

(A2)

(A3)

(A4)

(A5)

(A6)

[
A ~J[BT
B B IF

(A7)

The eqns (A7) can be recast in the expansion form

AB
T

+AB
T

= BAT +BA T
= I}.

AAT+AAT
= BBT+BBT = 0

(AS)

We see that AA T and BBT are pure imaginary matrices. Therefore, the following three matrices introduced by
Barnett and Lothe (1973)

S=

L=

i(2ABT-I).

-2iBBT
(A9)

can be shown to be real for the electroelastic medium. Now consider the following equation:
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[~L ;] = 2i{;}{BT AT} -if (AIO)

and rewrite (A8) as

rBT
A

T}{;}=1. (All)

Then, using (A 10) and (A 11), we have

[~L ;][~L ;] = -1. (AI2)

This means that

HL - SS = LH - ST ST = f}
(AI3)

LS+STL = SH+HST = 0

and the matrices LS and SH are antisymmetric, so we also have the identity

HL-SS = f. (AI4)


